Can generative AI figure out figurative language? The influence of idioms on essay scoring by ChatGPT, Gemini, and Deepseek

Authors: Enis Oğuz

Abstract:

The developments in Generative AI technologies have paved the way for numerous innovations in different fields. Recently, Generative AI has been proposed as a competitor to AES systems in evaluating student essays automatically. Considering the potential limitations of AI in processing idioms, this study assessed the scoring performances of Generative AI models for essays with and without idioms by incorporating insights from Corpus Linguistics and Computational Linguistics. Two equal essay lists were created from 348 student essays taken from a corpus: one with multiple idioms present in each essay and another with no idioms in essays. Three Generative AI models (ChatGPT, Gemini, and Deepseek) were asked to score all essays in both lists three times, using the same rubric used by human raters in assigning essay scores. The results revealed excellent consistency for all models, but Gemini outperformed its competitors in interrater reliability with human raters. There was also no detectable bias for any demographic group in AI assessment. For essays with multiple idioms, Gemini followed a the most similar pattern to human raters. While the models in the study demonstrated potential for a hybrid approach, Gemini was the best candidate for the task due to its ability to handle figurative language and showed promise for handling essay-scoring tasks alone in the future.

Link: https://arxiv.org/abs/2510.15009

LLM-based In-situ Thought Exchanges for Critical Paper Reading

Authors: Xinrui Fang, Anran Xu, Chi-Lan Yang, Ya-Fang Lin, Sylvain Malacria, Koji Yatani

Abstract:

Critical reading is a primary way through which researchers develop their critical thinking skills. While exchanging thoughts and opinions with peers can strengthen critical reading, junior researchers often lack access to peers who can offer diverse perspectives. To address this gap, we designed an in-situ thought exchange interface informed by peer feedback from a formative study (N=8) to support junior researchers’ critical paper reading. We evaluated the effects of thought exchanges under three conditions (no-agent, single-agent, and multi-agent) with 46 junior researchers over two weeks. Our results showed that incorporating agent-mediated thought exchanges during paper reading significantly improved participants’ critical thinking scores compared to the no-agent condition. In the single-agent condition, participants more frequently made reflective annotations on the paper content. In the multi-agent condition, participants engaged more actively with agents’ responses. Our qualitative analysis further revealed that participants compared and analyzed multiple perspectives in the multi-agent condition. This work contributes to understanding in-situ AI-based support for critical paper reading through thought exchanges and offers design implications for future research.

Link: https://arxiv.org/abs/2510.15234

Can generative AI figure out figurative language? The influence of idioms on essay scoring by ChatGPT, Gemini, and Deepseek

Authors: Enis Oğuz

Abstract:

The developments in Generative AI technologies have paved the way for numerous innovations in different fields. Recently, Generative AI has been proposed as a competitor to AES systems in evaluating student essays automatically. Considering the potential limitations of AI in processing idioms, this study assessed the scoring performances of Generative AI models for essays with and without idioms by incorporating insights from Corpus Linguistics and Computational Linguistics. Two equal essay lists were created from 348 student essays taken from a corpus: one with multiple idioms present in each essay and another with no idioms in essays. Three Generative AI models (ChatGPT, Gemini, and Deepseek) were asked to score all essays in both lists three times, using the same rubric used by human raters in assigning essay scores. The results revealed excellent consistency for all models, but Gemini outperformed its competitors in interrater reliability with human raters. There was also no detectable bias for any demographic group in AI assessment. For essays with multiple idioms, Gemini followed a the most similar pattern to human raters. While the models in the study demonstrated potential for a hybrid approach, Gemini was the best candidate for the task due to its ability to handle figurative language and showed promise for handling essay-scoring tasks alone in the future.

Link: https://arxiv.org/abs/2510.15009

css.php