Authors: Enis Oğuz
Abstract:
The developments in Generative AI technologies have paved the way for numerous innovations in different fields. Recently, Generative AI has been proposed as a competitor to AES systems in evaluating student essays automatically. Considering the potential limitations of AI in processing idioms, this study assessed the scoring performances of Generative AI models for essays with and without idioms by incorporating insights from Corpus Linguistics and Computational Linguistics. Two equal essay lists were created from 348 student essays taken from a corpus: one with multiple idioms present in each essay and another with no idioms in essays. Three Generative AI models (ChatGPT, Gemini, and Deepseek) were asked to score all essays in both lists three times, using the same rubric used by human raters in assigning essay scores. The results revealed excellent consistency for all models, but Gemini outperformed its competitors in interrater reliability with human raters. There was also no detectable bias for any demographic group in AI assessment. For essays with multiple idioms, Gemini followed a the most similar pattern to human raters. While the models in the study demonstrated potential for a hybrid approach, Gemini was the best candidate for the task due to its ability to handle figurative language and showed promise for handling essay-scoring tasks alone in the future.