Human or AI? Comparing Design Thinking Assessments by Teaching Assistants and Bots

Authors: Sumbul Khan, Wei Ting Liow, Lay Kee Ang

Abstract: As design thinking education grows in secondary and tertiary contexts, educators face the challenge of evaluating creative artefacts that combine visual and textual elements. Traditional rubric-based assessment is laborious, time-consuming, and inconsistent due to reliance on Teaching Assistants (TA) in large, multi-section cohorts. This paper presents an exploratory study investigating the reliability and perceived accuracy of AI-assisted assessment compared to TA-assisted assessment in evaluating student posters in design thinking education. Two activities were conducted with 33 Ministry of Education (MOE) Singapore school teachers to (1) compare AI-generated scores with TA grading across three key dimensions: empathy and user understanding, identification of pain points and opportunities, and visual communication, and (2) examine teacher preferences for AI-assigned, TA-assigned, and hybrid scores. Results showed low statistical agreement between instructor and AI scores for empathy and pain points, with slightly higher alignment for visual communication. Teachers preferred TA-assigned scores in six of ten samples. Qualitative feedback highlighted the potential of AI for formative feedback, consistency, and student self-reflection, but raised concerns about its limitations in capturing contextual nuance and creative insight. The study underscores the need for hybrid assessment models that integrate computational efficiency with human insights. This research contributes to the evolving conversation on responsible AI adoption in creative disciplines, emphasizing the balance between automation and human judgment for scalable and pedagogically sound assessment.

Link: https://arxiv.org/abs/2510.16069

css.php